

eBP: A Wearable System For Frequent and Comfortable Blood Pressure Monitoring From User's Ear

Nam Bui+, Nhat Pham+, Jessica Barnitz+, Zhanan Zou+,

Phuc Nguyen⁺, Hoang Truong⁺, Taeho Kim⁺, Nicholas Farrow⁺, Anh Nguyen⁺,

Jianliang Xiao⁺, Robin Deterding⁺, Thang Dinh^{*} and Tam Vu⁺.

*University of Colorado, *Virginia Commonwealth University,

Arm-cuff BP monitoring

Wrist-cuff BP monitoring

Hypertension – Ambulatory Blood Pressure Monitoring (24 hours)

<u>eBP</u>: In-ear Blood Pressure Monitoring System

Analysis of arterial system around the ear

Superficial Temporal Artery

Posterior Auricular Artery

Fundamentals of Arm/Wrist Cuff Mechanism

Introduce In-ear Blood Pressure Monitoring

Photoplethysmogram (PPG) Pulse Sensing

Challenge: Arteries inside the ear cannot be completely blocked by the balloon.

Artery eBP

Conventional Cuff device

Oscillometric BP measurement

In-ear blood pressure measurement model

Relational equation between the MAP, systolic, diastolic BP

☐ The Mean Arterial Pressure (MAP): is the average value of BP in one cycle.

$$P_{MAP} = \frac{1}{\tau} \int_0^{\tau} P(t) dt$$

- ☐ Assuming:
 - \square Pulse duration [0, τ]
 - $\square \beta = \Delta t_s / \Delta t_c$ is the systolic fraction.
- \Box The systole is in the interval (0, $\tau\beta$) and diastole is from

$$P_{MAP} = \frac{1}{\tau} \int_0^{\tau \beta} P(t)dt + \frac{1}{\tau} \int_{\beta}^{\tau \beta} P(t)dt$$

$$P_{MAP} = \frac{1}{\tau} \int_0^{\tau \beta} P(t)dt + \frac{1}{\tau} \int_{\beta}^{\tau \beta} P(t)dt \qquad = \beta \left[\frac{1}{\beta \tau} \int_0^{\tau \beta} P(t)dt \right] + (1-\beta) \left[\frac{1}{(1-\beta)\tau} \int_{\tau \beta}^{\tau} P(t)dt \right]$$

 $P_{M} = \beta P_{S} + (1 - \beta) P_{D}$

Challenge: In-ear balloon design.

- **Medical Safe.**
- **Bio-compatible.**
- **User's comfort.**
- Be able to attach Pulse sensor.
- Fit inside the ear.
- Be Inflatable inside the ear.

Making the balloon

Prototype

Experiment

Demographic data of study population	
Age (years)	18 - 35 years old
Blood Pressure	Systolic: 93-146, Diastolic: 53-113
Gender Ratio	Male: 24, Female: 11

Ground truth device: KonQuest KBP-2704A

<u>Calibration:</u> Polynomial regression model on the data of 5 subjects.

Result

Association for the Advancement of Medical Instrumentation

Systolic BP

18

Diastolic BP

Integrated to <u>earphone or</u>
<u>a hearing aid</u> for
frequently measuring BP

Improve the <u>algorithm</u>
<u>of existing cuff</u>
devices.

eBP: A Wearable System For Frequent and Comfortable Blood Pressure Monitoring From User's Ear

Nam Bui⁺, Nhat Pham⁺, Jessica Barnitz⁺, Zhanan Zou⁺,

Phuc Nguyen⁺, Hoang Truong⁺, Taeho Kim⁺, Nicholas Farrow⁺, Anh Nguyen⁺,

Jianliang Xiao⁺, Robin Deterding⁺, Thang Dinh^{*} and Tam Vu⁺.

*University of Colorado, *Virginia Commonwealth University,

