14th IEEE International Conference on Services Computing (SCC 2017)

GS1 GLOBAL SMART PARKING SYSTEM: ONE ARCHITECTURE TO UNIFY THEM ALL

Nhat Pham, Muhammad Hassan, Hoang Minh Nguyen and Daeyoung Kim

Honolulu, June. 25, 2017
Auto-ID Labs, Korea
School of Computing, KAIST

Homepage: http://autoidlab.kaist.ac.kr
Email: nhatphd@kaist.ac.kr
Contents

1. Introduction
2. Background
3. GS1 Global Smart Parking System Architecture
4. Prototype Implementation
5. Conclusion
6. References
1. Introduction

- **Smart parking in the big picture of future smart cities**
 - Population and size of our cities are predicted to steadily increase in the near future -> urban challenges for our future smart cities. E.g. 25-30% traffic is to find parking areas.
 - Many Smart City Services (e.g. conducted in Barcelona, San Diego, Open Cities project in Europe) -> lack of integrations, common and global data modelling.
1. Introduction

- **Motivations**
 - Having an open and unified smart parking service for users everywhere they go. (Similar to Internet services such as WWW.)
 - Open the discussion to realize a global and common base (regardless of countries and languages) for our future research and development of smart parking service.

- **Assumptions**
 - Every parking lots is capable of monitoring its current status in real-time.
 - Parking lots information should be publicly available.

- **GS1/Oliot**
 - EPCIS, ONS implementations are parts of Oliot project.
 - Oliot is freely available (Apache License 2.0) at http://gs1oliot.github.io/oliot/
2. Background

- **GS1 (Global Standard 1)**
 - Global Standardization Organization
 - Develop and maintain standards for supply and demand chains around the world.
 - **Identify**: Globally unique identification keys
 - **Capture**: Automatic data capture
 - **Share**: Exchange of business-critical information
 - Local member organizations in over 110 countries
 - Over a million member companies across the world
 - Global Common Language
2. Background

- **EPCIS (EPC Information Service)**
 - Storage for storing master data and event data
 - Master data (EPCIS Header): is the core information about “who” and “what” of things.
 - Event data (EPCIS Body): WHAT object generates that event; WHEN, and WHERE, it was generated; and WHY it happens.
2. Background

- **ONS (Object Name Service)**
 - DNS-based service that helps finding the services for each identifier.
 - When receiving the GS1 key, it returns the service list for that key.
3. GS1 Global Smart Parking System Architecture

- **Identification**
 - GS1 Global Location Number (GLN).

- **Master data**
 - Parking lot’s name, address, GLN, etc.

- **Event data**
 - Real-time status, i.e. current available parking spaces.

- **Meta data**
 - GPS coordinates, GLN => to do the mapping between user’s area and parking lots’ GLNs in that area.

- **Application flow:**
 - User’s location -> parking lots’ GLNs
 - GLN -> services and EPCIS URLs (ONS)
 - Query EPCIS URLs to get data.
3. GS1 Global Smart Parking System Architecture – Area-2-GLNs service

- **Area-2-GLNs service**
 - Designed as an EPCIS system, SimpleEventQuery is used to query GLNs from an area.

 http://(SMART SEARCH SERVER)/epcis/Service/Poll/SimpleEventQuery?
 LT: http://www.tta.or.kr/epcis/schema/parkingspace.xsd%23gps_latitude=(NE_latitude)&
 GE: http://www.tta.or.kr/epcis/schema/parkingspace.xsd%23gps_latitude=(SW_latitude)&
 LT: http://www.tta.or.kr/epcis/schema/parkingspace.xsd%23gps_longitude=(NE_longitude)&
 GE: http://www.tta.or.kr/epcis/schema/parkingspace.xsd%23gps_longitude=(SW_longitude)&

- **Global scale**
 - Hierarchical architecture: root -> countries -> cities...
 - Employ Google’s reverse geocoding:
 (36.367056, 127.363965 -> Daehak-ro, Yuseong-gu, Daejeon, South Korea)

 ⇒ Query root -> redirect S.Korea server
 -> redirect Daejeon server.
 - When user moves to new location, application can use cached URLs to trace upwards until found another server.
3. GS1 Global Smart Parking System Architecture - ONS

- **ONS**
 - Provides a link between a GLN and its services.
 - Leverages existing DNS infrastructure and standard.
 - Example of ONS NAPTR (A Name Authority Pointer) record

<table>
<thead>
<tr>
<th>Order</th>
<th>Pref</th>
<th>Flags</th>
<th>Service</th>
<th>RegExp</th>
<th>Replacement</th>
</tr>
</thead>
</table>

- Service field: contain an URL indicating a provided service of a parking lot.
- RegExp field: the corresponding EPCIS URL for a service in Service field.

- **ONS use cases:**
 - **Parking lot owners:** register their services and corresponding EPCIS URLs to ONS system.
 - **User’s application:** convert a parking lot’s GLN -> FQDN (Fully qualified domain name) -> query NAPTR records from ONS -> get the list of services and their EPCIS URLs.
3. GS1 Global Smart Parking System Architecture - EPCIS

- **EPCIS use cases**
 - **Governments (or organizations):** get GLNs from GS1 and install Area-2-GLNs, EPCIS and ONS systems in their desired areas.
 - **Parking lot owners:** setup their sensors, and send Master, Event and Meta data to EPCIS, and Area-2-GLNs systems, respectively.
 - **User’s application:** query EPCIS system to get XML files holding necessary data.

- **XSD schemas:**
 - An example for XSD schema of Master data is shown on the right side.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema

  xmlns:xs="http://www.w3.org/2001/XMLSchema"
  attributeFormDefault="unqualified" elementFormDefault="qualified"
  <xs:simpleType name="parkingspace_name">
    <xs:annotation>
      <xs:documentation>
        parking lot's name
      </xs:documentation>
    </xs:annotation>

    <xs:restriction base="xs:string"/>
  </xs:simpleType>

  <xs:simpleType name="parkingspace_address">
    <xs:annotation>
      <xs:documentation>
        parking lot's address
      </xs:documentation>
    </xs:annotation>

    <xs:restriction base="xs:string"/>
  </xs:simpleType>

  <xs:simpleType name="parkingspace_max_cap">
    <xs:annotation>
      <xs:documentation>
        parking lot's maximum capacity
      </xs:documentation>
    </xs:annotation>

    <xs:restriction base="xs:string"/>
  </xs:simpleType>

  <xs:simpleType name="gpc">
    <xs:annotation>
      <xs:documentation>
        GS1 GLN code
      </xs:documentation>
    </xs:annotation>

    <xs:restriction base="xs:string"/>
  </xs:simpleType>
</xs:schema>
```
4. Prototype implementation

- **Android application**
 - Implemented on Nexus 7 (Android 6.0)
 - Support 9 Korean airports and Busan city w/ total 35 parking lots.
 - Parking lots’ real-time data are provided by Korean gov.
 - These data are captured and converted to Master, Event and Meta data to be used in our system.
5. Conclusion

- **Contributions**
 - Open the discussion to realize a global and common base for smart parking services.
 - A global architecture for smart parking system based on GS1 standards has been proposed. It enables a new and open business model for parking lot owners and users everywhere in the world to smoothly integrate their information and services around common standards.
 - A prototype has been implemented to show its feasibility.

- **Acknowledgment**

 This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. R7115-16-0002, Wise-IoT).
5. References

GS1 Oliot Architecture