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ABSTRACT
Bioelectrical signals representing electrical activities of hu-
man brain, eyes, and facial muscles have found widespread
use both as important inputs for critical medical issues and
as an invisible communication pathway between human and
external devices. However, existing techniques for measur-
ing those biosignals require attaching electrodes on the face
and do not come in handy sizes for daily usage. Additionally,
no study has been capable of providing all three biosignals
with high fidelity simultaneously. In this paper, we present a
low-cost bioelectrical sensing system, called LIBS, that can
robustly collect the biosignal of good quality from inside
human ears and extract all those three fundamental biosig-
nals without loss of information. The practicality of LIBS
is shown through one real world scenario of a sleep quality
monitoring system. Based on preliminary results, we further
propose potential healthcare applications utilizing the sen-
sor’s outputs for our future research.
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1. INTRODUCTION
For clinical environment, electroencephalography (EEG),

electrooculography (EOG), and electromyography (EMG)
are trusting methods to record fundamental neuronal electri-
cal signals excited by brain activities, eye movements, and
muscle contractions, respectively. To date, these signals are
most often used not only in medical areas but also in brain-
computer interface research. Measuring them, however, re-
quires a set of electrodes attached on human body, which
must be correctly done at clinical facilities. While these tra-
ditional approaches provide accurate measurement, they are
cumbersome and expensive for daily life monitoring, cause
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discomfort for a person wearing them, and might risk a lead
failure when the person moves.

Recent advances in wearable and mobile technologies
have enabled promising hi-tech solutions to ease EEG, EOG,
and EMG methods of a burden. For example, headphones [1,
5], headbands [15], and eye masks [8] have been built to cap-
ture the biosignals with a fewer number of electrodes. While
the accuracy has been improved, these solutions still bring
uncomfort and awkward visibility to users wearing them on
forehead, scalp, or face for regular activities or sleep. There
has been a remarkable research [3, 4, 6, 9, 10, 14] trying to
find alternative places on the body to continuously and in-
visibly monitor the signals. However, they have not demon-
strated the ability to possibly provide all three fundamental
signals at a time with high fidelity and comfort for a low-
cost, personal, and daily use.

Upon our prior work [12], we present LIBS as a low-
cost in-ear bioelectrical sensing solution that brings con-
venient monitoring for daily use and provides good EEG,
EOG, and EMG signals extracted from the single-channel
biosignal recorded from the ear canals. Specifically, LIBS
works with a wearable recorder built in the shape of ear buds
embedding only two passive electrodes and placed comfort-
ably inside the ear. Due to a special location of human ear
canals, EEG, EOG, and EMG signals and unwanted noise
are mixed together in the biosignal obtained by our in-ear
device. Thus, LIBS takes the mixed in-ear signal and adopts
a signal separation model to extract those three biosignals
of interest without loss of information. In this paper, LIBS
further proposes a novel solution to enhance the signal sepa-
ration model capable of adaptively controlling the variability
of the signals without a need of per-user learning process.

In this work, we have met following key challenges:
+ Delicate structure of ears and low amplitude signals:
Analyzing an anatomy of human head results that sources
of brain activities, eye movements, and muscle contractions
are far away from the in-ear electrodes making the signal-
to-noise ratio low. On the other hand, the ear canals have
a small uneven volume and are easily deformed by muscle
movements. Therefore, assuring an ability to achieve an ef-
ficient signal acquisition from far distance challenges LIBS
to thoroughly design its sensing system.
+ Only one recording channels and overlapping signals:
Recording the biosignal cannot avoid a problem of mixing
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Figure 1: Overall architecture of LIBS

signals since their sources are possibly activated simultane-
ously. So, the second challenge of LIBS emanates from the
necessary of retrieving individual EEG, EOG, and EMG sig-
nals while the number of recorded channels is fewer than
the number of signals of interest, whose amplitude and fre-
quency are highly overlapped.
+ Variability of signals across people in separate sleep
recordings: The biosignals are widely divergent from peo-
ple to people due to their personal physiological conditions.
They are also varied in different signal acquisitions because
of the displacement of electrodes in distinct device hookups.
As a result, avoiding per-user training phase becomes a great
challenge of LIBS to develop a robustly adaptive signal sep-
aration algorithm.

2. LIBS DESIGN
In this work, LIBS is designed to automatically capture

the bioelectrical signal in the ear canal and then precisely
extract individual EEG, EOG, and EMG signals from that
single-channel in-ear signal. As shown in Figure 1, LIBS is
composed of two main modules:

Data acquisition – To overcome the first challenge of
collecting the low amplitude biosignal inside the delicate-
structure ear, our wearable recorder is built from a foam
earplug to make it fit well within the ear canal without per-
sonalization and small pieces of conductive silver cloth to in-
crease the responsiveness of electrodes. Different from [3],
we further (1) cover the electrodes with many pure and thin
silver leaves on top to achieve low and consistent surface-re-
sistance for the electrodes and (2) place the main electrode
in one ear and the reference electrode in another ear to am-
plify the signals. Due to the measurement in voltage poten-
tial, creating a far distance between these electrodes is very
helpful. Hence, our device is able to acquire the good single-
channel in-ear biosignal that is later passed through different
band-pass filters to eliminate noise.

Signal separation – To solve the second challenge of hav-
ing the fewer number of recording channels than the num-
ber of signals of interest, we develop the signal separation
model from a non-negative matrix factorization (NMF) tech-
nique [2]. Specifically, this technique tries to solve an opti-
mization problem of decomposing the power spectrum X of
the in-ear signal into a multiplication of two distinct non-

(a)

(b)

Figure 2: A comparison of EEG, EOG, and EMG signals
(b) recorded by the gold-standard device (pink) and ex-
tracted by our signal separation algorithm (blue) using
the single-channel in-ear signal (a) during stage N1 of a
real sleep study
negative matrices

X ' WH (1)

where W represents a spectral template of three signals and
H represents activation information of each basis described
in the template W . Different from [2], a learning process is
further studied to build a fixed spectral template matrix cor-
responding to each EEG, EOG, and EMG from the ground-
truth data, which helps deal with their overlapping and un-
stable properties. To handle the third challenge of biosig-
nal variability, an idea of group analysis [7] is adopted to
seek common patterns that reflect the variability from user to
user studied from the training set of ground-truth data with
a modification of Equation 1 as following

X ' WCHC +WIHI (2)

where WC , HC , WI , and HI are common sparse and indi-
vidual template and activation matrices, respectively.

3. CASE STUDY: SLEEP STAGING
We preliminarily evaluated LIBS in its practicality, usabil-

ity, and accuracy through a healthcare application. In this
scenario, a user wears a pair of earplugs integrated with LIBS
to automatically record his in-ear biosignal while sleeping.
The in-ear mixture is then preprocessed and separated into
EEG, EOG, and EMG signals that are later applied into a
classification model to automatically determine sleep stages
at 30-second granularity. The hardware setup includes the
ear-worn recorder connecting to an OpenBCI board [13]
configured at a sampling rate of 2000 Hz and a gain of 24.
The recorded signal is currently written to a SD card plugged
directly to the board for storage and processed by Matlab.
Simultaneously, we hook up the user with a portable PSG
Trackit Mark III [16] to collect groundtruth EEG, EOG, and
EMG signals during sleep and then use the POLYSMITHTM

program to provide the groundtruth sleep stages for both
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Figure 3: A hypnogram of 15-min data showing the sleep
staging result with the three input signals given by LIBS
(top) and compared to the ground truth (bottom). Blue
dashed rectangles are used to mark its misclassification.

training and evaluating LIBS when necessary. As shown in
Figure 2, our signal separation algorithm integrated in LIBS
was supervised well to be able to extract EEG, EOG, and
EMG signals with high quality and similar shape compared
to the corresponding signals captured by the gold-standard
device. On the other hand, as shown in Figure 3, we ob-
serve that the dynamics of the hypnogram was almost well
maintained in case of our end-to-end system. Hence, we see
opportunities provided to reliably develop healthcare appli-
cations using the biosignals output by LIBS.

4. FUTURE RESEARCH
In health care, EEG, EOG, and EMG provide a lot of im-

portant information of human brain, eyes, and muscles. Con-
sequently, achieving those bisignals from the mixed in-ear
signal by LIBS provides very informative inputs to health-
care applications. In this section, our future research into
the use of LIBS’ outputs and its challenges are discussed.

+ Sleep quality monitoring: Evaluating sleep quality al-
ways requires a precise computation of the duration of differ-
ent sleep stages identified through a simultaneous recording
of those three fundamental signals. In this application, the
challenge is to provide suitable features extracted from the
biosignals and then decide the most effective combination of
the features in a training process to maximize the distinction
between all sleep stages.

+ Sleep environment controlling: Environmental factors
(e.g. light intensity, room temperature, air humidity, air pres-
sure, and ambient sounds) can be an essential reason for
interrupted and poor sleep quality on human [11]. In this
scenario, EEG, EOG, and EMG output from LIBS can rep-
resent the user’s sleep quality. The challenge is to develop a
causality model that is capable of investigating the correla-
tion between environmental variations and the biosignals to
further provide suggestions for improving sleep quality.

+ Brain-related disease diagnosis: EEG is an essential
component in the evaluation of brain-related diseases (e.g.
epilepsy, sleep disorders, etc.). Most of such the diseases
are caused by a disruption in the way the brain is working.
Hence, the challenge of this application is to discover special
patterns defining their pre-occurrence state in the activity of
brain cells showing in EEG in real time.

+ Sudden infant death syndrome (SIDS): SIDS is de-
fined as a sudden unexplained death of a child less than one

year of age. Recently, a prevention of it can be done by mon-
itoring changes in their EEG, EOG, and EMG. However, us-
ing LIBS in this situation is very challenging since (1) the
overall volume of their ear canal and the amplitude of their
biosignals is significantly small and (2) the patterns of their
biosignals differ from those of adults. Those challenges re-
quire LIBS to have a significant improvement on the design
of the wearable recorder as well as a novel signal separation
algorithm that can adapt well in case of babies.

+ Autonomous audio steering for hearing aids: In this
application, the purpose is to help people with hearing im-
pairment improve speech understand in background noise
by silently controlling their hearing aid to only amplify the
sound source coming from the direction of interest (i.e. from
left or right ears). In this application, the challenge is to au-
tomatically detect which direction of the sound source the
wearer is focusing on by only analyzing the change of EEG
signal.

5. CONCLUSIONS
A low-cost in-ear bioelectrical sensing system to captur-

ing good EEG, EOG, and EMG signals with high comfort
has been presented. Our preliminary implementation of clas-
sifying different sleep stages during sleep demonstrated the
feasibility of developing healthcare applications using fun-
damental biosignals sensed in human ear canals and ex-
tracted from the single-channel in-ear biosignal. Our in-ear
sensing solution also offered potential advantages of long-
term, light-weight, and reliable usability that asks for a fur-
ther exploratory step toward a professional design of the
earplug-like wearable device and a novel signal separation
algorithm to flexibly adapt the variability of the biosignals
across people and across recordings.
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