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Abstract

Objectives: Manual clinical scoring systems are the current standard used for acute

asthma clinical care pathways. No automated system exists that assesses disease

severity, time course, and treatment impact in pediatric acute severe asthma

exacerbations. Working hypothesis: machine learning applied to continuous vital sign

data could provide a novel pediatric‐automated asthma respiratory score (pARS) by

using the manual pediatric asthma score (PAS) as the clinical care standard.

Methods: Continuous vital sign monitoring data (heart rate, respiratory rate, and

pulse oximetry) were merged with the health record data including a provider‐
determined PAS in children between 2 and 18 years of age admitted to the pediatric

intensive care unit (PICU) for status asthmaticus. A cascaded artificial neural network

(ANN) was applied to create an automated respiratory score and validated by two

approaches. The ANN was compared with the Normal and Poisson regression models.

Results: Out of an initial group of 186 patients, 128 patients met inclusion criteria.

Merging physiologic data with clinical data yielded >37 000 data points for model

training. The pARS score had good predictive accuracy, with 80% of the pARS values

within ±2 points of the provider‐determined PAS, especially over the mid‐range of

PASs (6‐9). The Poisson and Normal distribution regressions yielded a smaller overall

median absolute error.

Conclusions: The pARS reproduced the manually recorded PAS. Once validated and

studied prospectively as a tool for research and for physician decision support, this

methodology can be implemented in the PICU to objectively guide treatment

decisions.
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1 | INTRODUCTION

The use of pediatric clinical scoring systems in clinical care and

research has exploded in the last decade. Clinical scoring systems

appeal to multiple stakeholders because they are quantitative, can be

validated and improve patient outcomes.1–4 Pediatric asthma is no

exception; as the most common chronic disease of childhood,

development of clinical scores and guidelines have helped to

streamline and improve pediatric asthma care delivery.5

Many hospitals have developed clinical care guidelines for

management of acute asthma exacerbations built around manual,

provider‐determined asthma severity scores. Examples include the

pediatric asthma score (PAS) and pediatric respiratory assessment

measure. These scores contain similar elements but are customized
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to individual hospitals.6–8 The use of these scores to guide inpatient

treatment of acute asthma exacerbations has improved patient

outcomes including reduced length of stay, decreased admission

rates, and decreased medication burden in both the emergency

department and inpatient wards.5,9–11

Respiratory scores like PAS contain subjective elements like

auscultation, have limited interrater reliability, and are less sensitive

in older children and adolescents. They are used intermittently and

depend on frequent reassessment, increasing the burden on staff.12

The provider‐determined PAS score used in our institution includes

qualitative measurements (Figure S1).13 Despite being useful on the

wards, PAS scores are measured inconsistently in our intensive care

unit (ICU) and not regularly used to make care decisions.

There is significant variation in care of pediatric intensive care

unit (PICU) patients with asthma, both within and across centers and

hospitals.14 Despite the existence of stepwise guidelines for out-

patient asthma management,15 there are no national or international

guidelines to direct severe acute asthma exacerbation management

in the PICU. Validated scores for asthma severity can be useful in

clinical and quality research on asthma therapies such as intravenous

bronchodilators and use of noninvasive ventilation.

The objective of this study was to produce a novel, automated

acute asthma severity score using machine learning. Machine

learning is built on a foundation of mathematics, logic, probability,

neuroscience, and decision theory. These foundational building

blocks are used to generate computer algorithms that can keep a

record of the relative strength of associations between data elements

(similar to memory) through repeated training sessions. As a result,

machine learning can identify patterns in complex data and then uses

those patterns to construct models that can predict outcomes

without relying on explicit human‐generated programming code.

Supervised learning is a subfield of machine learning based on tools

of classification and regression; it depends on the input of a labeled

training data set to help the computer “learn” relationships. That

knowledge is then applied to an independent testing data set. The

accuracy of outputs can then be analyzed. Artificial neural networks

(ANNs) are a specific set of algorithms modeled after the structure of

the human brain, designed to cluster and classify data and

subsequently produce novel outputs.16

We hypothesized that application of machine learning algorithms

to passively collected vital sign data (heart rate, respiratory rate, and

oxygen saturation) in critically ill pediatric asthma patients can

generate a pediatric‐automated asthma respiratory score (pARS) that

could eventually replace PAS. Once created, the pARS can be validated

and applied prospectively in the PICU, wards and emergency

department to aid in clinical research and provider decision support

without increasing the burden of staff or utilizing subjective measures.

2 | METHODS

This was a single center study conducted at a large quaternary

children's hospital. The Colorado Multiple Institutional Review Board

(COMIRB 16‐1359) approved this study. Eligible patients were

identified during a 1‐year period, 1 January 2016 to 1 January 2017

using data collected and stored during their clinical care.

2.1 | Patient selection

Inclusion criteria included patients admitted to the PICU age 2 to 18

years old with diagnosis codes for status asthmaticus across all severities.

Data from patients who had international classification of diseases (ICD)

9/ICD 10 procedure codes within the encounter for intubation, or

received continuous invasive mechanical ventilation were excluded.

Diagnosis codes for other potentially confounding chronic respiratory

and neurologic conditions also disqualified patients (Table S1 and S2).

2.2 | Data collection

Demographic variables and time‐stamped clinical data including

charted PAS score, respiratory support, and medications were

obtained from the electronic health record (EHR). Using bed numbers

and admission/discharge time stamps, each patient's continuous vital

sign information was manually extracted from a central research

database. This database stores vital sign data (numeric and wave-

form) from PICU patients attached to the Phillips monitors. Data

extracted for this study included time‐stamped values for heart rate,

respiratory rate, and pulse oximetry.

2.3 | Data preparation

The EHR respiratory flow sheet data were aligned with vital sign data

using date and time stamps for PAS score in Matlab (version R2017a).

The recorded PAS was used as an outcome to train the supervised

machine learning models. Patient data with complete records of three

parameters (heart rate, respiratory rate, and pulse oximetry readings)

overlapping with PAS time points were included. Patient data with

incomplete alignment were excluded to create the final study cohort

of 128 patients. For each PAS score recorded in the medical record,

20minutes of vital sign measurements were associated with one PAS

score via a standard one‐to‐many matching strategy to create discrete

time periods for algorithm training (Figure S2). To control for age‐
based variability in heart rate and respiratory rate, z‐scores for each

patient's heart rate and respiratory rate were calculated using the

patient's age and normalized percentile equations published by

Bonafide et al 2013.17 To exclude readings likely due to artifact,

thresholds for heart rate, respiratory rate, and oximetry values were

also applied (see Additional Methods).

2.4 | Statistical analysis

Patients were randomly assigned into a training (80%) or testing

(20%) set (balanced validation) and compared with ensure balance by

demographic criteria and clinical criteria. A separate randomized

10‐fold cross validation was conducted to further validate findings.
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2.5 | Machine learning

Supervised machine learning techniques use input and output data to

find patterns and make predictions. A cascaded ANN was used to

predict a respiratory score ranging from 1 to 15, based on training

inputs. Neural networks depend on linking “neurons” or multiple

learning units to detect patterns in data. In comparison with the

conventional feed‐forward neural network, the cascaded network

structure is more advanced. It augments a set of cascaded paths to

direct the nodes in the preceding and current layers to be the input

into the next layer (Figure S3). The cascaded ANN included eight

hidden layers with 3 to 50 neurons in each layer. Machine learning

regression models based on Normal and Poisson distribution were

used for comparative purposes. The accuracy of machine learning

models was assessed by comparison of the median absolute error

(MAE) for each of the testing sets. Matlab (version R2017a) was the

program used to create the machine learning algorithm.

3 | RESULTS

The health record query returned 186 eligible patients admitted to

the PICU for status asthmaticus without a potential confounding

diagnosis as described in our exclusion criteria. Of the 18 621

patients were excluded due to lack of stored vital sign data during

the admission and an additional 37 patients were excluded due to

lack of PAS scores that aligned with available extracted vital sign

data. The remaining N = 128 patients were included in our

randomization and subsequent machine learning analysis (Figure 1).

A total of 50.8% of the inclusion cohort were male, with 34.4%

Hispanic/Latino ethnicity, and 19.5% identifying as African American/

Black. The median age was 7.9 years old and the median length of

hospital stay was 79 hours (Table 1).

In our training data, we had 4943 original PAS scores or 12.5

manual scores calculated per day of hospitalization. The median

(range) of PAS scores was 7 (5‐15). Plots of PAS score vs heart rate

z‐score, PAS score vs respiratory rate z‐score show a positive

relationship (Figure S4).

The training (n = 102) and testing (n = 26) patients in our

balanced set showed comparable distributions of demographic and

clinical factors (heart rate z‐score, respiratory rate z‐score, and PAS

scores; Table 1). The balanced training set (n = 102 patients and

37 084 data points) was reduced slightly to 36 321 data points after

application of the artifact thresholds for age‐adjusted heart rate and

respiratory rate. For the 10‐fold cross‐validation, the number of data

points included in each fold of training varied from approximately

34 000 to 38 000.

On the basis of the comparison of MAE for the balanced testing

set for each of the machine learning models, the cascaded ANN with

eight hidden layers trained with the balanced group yielded the

smallest MAE of 1.21. The MAEs across the balanced group Poisson

and Normal models were 1.24 and 1.25, respectively. The Poisson

and Normal models each yielded slightly higher MAEs for the

extreme values of the PAS scores (Figure 2). The most accurate

predictions occurred in the mid‐range values of 6‐9, where the most

training data existed (Figure 2).

In our asthma clinical care guidelines, 2‐point discrimination on

the PAS scale is a clinically relevant range for guiding care. Thus, we

also evaluated pARS predictability in the ±2 point range. Specifically,

80% of the pARS scores produced by the ANN algorithm are within

±2.10 of the recorded PAS for the balanced testing set. The results

from the 10‐fold cross validation are similar (Figure S5).

The pARS values are also aligned well with PAS when mapped

over time across the course of individual patient encounters

(Figure 3).

186 eligible pa�ents

Included (n=128):                                                    
--128 with aligned PAS 

scores and vital sign data

Excluded (n= 58):
--21 pts with no stored 

vital sign data
--37 pts with no vital sign 

aligned PAS scores

F IGURE 1 Consort diagram illustrating the cohort used for
analysis

TABLE 1 Cohort description and demographics, distribution of
demographics within balanced testing and training sets, reported
race, and ethnicity

N (%) or
median (IQR)

Full

cohort
(n = 128)

Training
(n = 102)

Test
(n = 26)

Sex (male) 65 (50.8%) 50 (49.0%) 15 (57.7%)

Age, y 7.9 (4.4‐11.4) 7.6 (4.0‐11.4) 9.0 (5.4‐11.4)

Hispanic or Latino

ethnicity

44 (34.4%) 34 (33.3%) 10 (38.5%)

Race

White 66 (51.6%) 51 (50.0%) 15 (57.7%)

Black/African

American

25 (19.5%) 19 (18.6%) 6 (23.1%)

Other* 37 (28.9%) 32 (31.4%) 5 (19.2%)

Length of stay, h 79 (42‐117) 71 (39‐112) 85 (50‐138)

Max PAS score 10 (9‐12) 10(9‐12) 11 (10‐12)

PAS score, median

(range)

7 (5‐15) 7 (5‐15) 8 (5‐13)

Abbreviations: IQR, interquartile range; PAS, pediatric asthma score.

*Other race includes: American Indian/Alaska Native (n = 1), Asian (n = 1),

Native Hawaiian/Other Pacific (n = 1), unknown/not reported (n = 3),

other (n = 23) and more than one race (n = 9).
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4 | DISCUSSION

We successfully created pARS, a novel, pediatric‐automated asthma

severity score, using physiologic data and machine learning. Using an

ANN trained with three vital sign parameters, the pARS was well

within 2 points of recorded PAS scores based on the analysis of MAE.

This level of accuracy makes the automated score noninferior to the

manual PAS used at our institution.

The pARS was most accurate in the mid‐range of asthma severity

between 6 and 9. This severity range is when critical decisions about

patient care (transfer to ICU vs floor) are made, increasing the potential

positive impact of an objective decision support tool that uses pARS.

This study is foundational in its use of the secondary electronic

medical data merged with the passive vital sign monitoring

information collected in the course of patient care to create an

automated pediatric respiratory score. The strengths of this machine

score are its objectivity, and that it uses data collected automatically

from monitors already in use. It also incorporates age‐based
parameters. It is unique in its ability to continuously monitor acute

changes in asthma status with a computed score.

Because it is objective, automated, and can be continuously

generated, this score has the potential to help standardize acute

pediatric asthma care in the PICU. Studies of PICU management of

severe asthma across pediatric hospitals and even within a single

institution have revealed marked variability in practice.14,18 While

there are global treatment guidelines for asthma in the primary care

and emergency department setting,15,19 acute care of life‐threaten-
ing pediatric asthma, particularly in severe exacerbations treated in

PICU, is not standardized. Respiratory scoring systems for pediatric

asthma have streamlined and improved inpatient care, but there is an

inconsistent use of any such scoring system in the PICU. Bartlett

et al5 implemented and studied a successful clinical care guideline in

the PICU, which included a bronchodilator weaning pathway based

on a subjective staff generated respiratory score called the modified

pulmonary index score and showed a decreased length of stay in the

hospital overall. An automated, quantitative score to replace these

respiratory scores is appealing to critical care providers who are

concerned about evidence‐based clinical decision making, interrater

reliability, and staff efficiency.

Currently, no automated asthma severity score has been published

that is sensitive to changes in acute respiratory status. Existing work in

pediatric asthma prediction has focused on predicting the occurrence

of asthma exacerbations and asthma control deterioration.20–24 Other

machine learning and predictive analytic work in pediatrics have

targeted sentinel events such as sepsis, respiratory failure requiring

intubation, and cardiac arrest as outcomes. The frequency of these

events is low and thus requires a large patient population and

significant monitoring time to assess validity. The pARS score can be

validated over a shorter time frame and in smaller populations

because it assesses and learns the continuum of disease severity and

can be associated with more common outcomes, for example,

F IGURE 2 Absolute error of pARS plotted at each PAS value for
the ANN, Poisson and Normal models in the balanced test set. The
distribution of the absolute errors are represented using box plots,
the boxes extend to the 25th and 75th percentiles, the median

values are indicated with a line inside the box and means are denoted
with a large circle. The whiskers extend to 1.5 times the interquartile
range and values outside of that are indicated with points. A

reference line at 2 is plotted. A histogram of the PAS scores is
displayed at the bottom of the figure. ANN, artificial neural network;
pARS, pediatric‐automated asthma respiratory score; PAS, pediatric

asthma score [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 pARS scores (gray lines) overlaid on PAS scores (thick
black lines) plotted over time for four example subjects. pARS,
pediatric‐automated asthma respiratory score; PAS, pediatric asthma
score
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decreasing length of stay in PICU rather than leveraging outcomes

such as respiratory arrest and death that are discrete rare events.

Limitations of this study include incomplete data from the clinical

record and vital sign database, which decreased our inclusion cohort.

While data fidelity issues are innate to using electronic clinical record

data for secondary research investigation, this highlights the importance

of considering issues of data input and integrity as we build our health

data systems, particularly as it becomes imperative to merge and map

multiple data sources.25 Because of the practice patterns in our PICU,

the PAS score is not recorded as frequently as on the inpatient floors,

which limited data analysis, further emphasizing the need for an

automated score. In addition, our algorithm training was restricted to

the specific PAS score used at our center and therefore may not

generalize to systems that use other versions of manual clinical scoring.

We were able to build this score using a heterogenous pediatric patient

population at altitude (~5280 ft) seen at an urban quaternary care

center. All patients included were on oxygen while in the PICU as a part

of the standard of care. This introduces variability into the pulse

oximetry data incorporated into the algorithm. Future prospective,

multicenter study is needed to further elucidate the impact of oxygen

therapy on vital sign parameters.

Our study algorithm was also not designed to include other clinical

features or risk factors that can influence asthma severity. For example,

acute bronchodilator use, the effect of noninvasive ventilation, as well

as markers of chronic asthma severity including controller medication

use and adherence, atopy, prior hospitalization history, recent exacer-

bations, symptom surveys, baseline FEV1%, and environmental expo-

sures could all impact pARS predictive ability. Prospective collection of

some of these parameters in future studies may strengthen our model

and allow further personal risk stratification and treatment algorithms.

Work by Luo et al23 in 2015 was able to merge 2 years of pediatric

asthma personal symptoms data collected via a mobile application with

patient attributes and environmental variables to successfully predict a

child's asthma control deterioration 1 week ahead.

Our study analyzed vital sign parameters measured at 1‐minute

intervals. Because of the limited computing power and data storage and

access limitations, we were not able to analyze the dense data contained

in these vital sign waveforms. The ability to apply deep or unsupervised

machine learning to high data density vital sign waveforms has enormous

predictive potential. For example, trends in heart rate variability have

been used to predict neonatal sepsis and arterial waveforms analyzed to

predict hypovolemic shock.26–28 Advances in mobile and hospital‐based
monitoring and cloud‐based analytics are innovations that will help

facilitate research and clinical application of high‐resolution physiologic

data, conquering current challenges of poor fidelity data due to artifact

and variable collection, and the size of the data files.

Any decision support tool is only useful if providers trust and utilize

it. Implementation and adoption of this tool in the PICU will require

significant changes to workflow with patients and the use of the EHR.

Significant quality improvement and culture change work will be needed

to adopt this scoring system as a clinical decision‐making tool.

Given these limitations and context, the next steps are to work

prospectively to validate pARS as a research instrument and

associate it with meaningful clinical outcomes first in our institution,

and then more broadly. Technologic innovation addressing issues

including integration of data sources and the EHR, computing power,

and the speed to run machine learning methods continuously will be

required to translate this score into a clinician decision support tool.

With prospective validation, real‐time implementation and workflow

adoption, we believe a score like pARS can drive higher quality care,

improve patient flow, decrease the length of stay and medication

burden (facilitate timely weaning of continuous medications).

5 | CONCLUSION

This study shows that the creation of a pARS leveraging machine

learning techniques such as ANNs to analyze simple vital sign

parameters and limited clinical data is feasible. The potential impact

of such a score to improve and standardize the PICU management of

acute asthma exacerbation is significant. Our study revealed multiple

barriers to integration of disparate clinical data sources and was also

weakened by incomplete EHR and monitor data, both common

challenges in studies using secondary retrospective queries on data

produced by routine clinical practice. Further prospective validation

of our algorithm is imperative to improve data integrity, refine and

expand contributing features, and assess the impact of pARS on

clinical outcomes including length of stay, and medication burden and

operational impacts such as staff efficiency.
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