Motivation

- Vehicle communication starts to be enforced by law from 2020
 - Protecting VRUs using vehicle communication is receiving attention
- Most apps are using Wi-Fi or Wi-Fi Direct as replacements of DSRC
- Inefficient alarm methods lower the utility of the VRU protection
 - Pop-up alarms prevent using other apps [1, 2]
 - Using notification messages is less intuitive [3]

V2P Communication for VRU Protection

- SAE J2735 (pedestrian -> vehicle)
 - It is the vehicles that take the responsibility for VRU protection
 - User devices transmit Personal Safety Messages (PSMs)
 - On receiving PSMs, the drivers take necessary measures
- Our approach (vehicle -> pedestrian)
 - The road users also need information about nearby vehicles
 - Vehicles transmit Basic Safety Messages (BSMs)
 - On receiving BSMs, the road users protect themselves from dangerous situations

System Architecture

- Hardware components

Visual Cue-Based VRU Protection App

- Parsing and decoding messages
 - From this procedure, it gets vehicle information in the BSM
- Calculating a marking position and the level of danger for the incoming vehicle
 - GPS coordinate, heading, and speed data in BSM are applied
- Highlighting the screen edge on the incoming vehicle side
 - The highlighted part is moving along the edge
 - The visual cue color is changed along the level of danger
- Effects
 - Smartphone users can utilize other apps regardless of the existence of visual cue
 - They can also recognize vehicle information intuitively

Conclusion

- We provide intuitive visual cues to the smartphone user looking at the screen
- People can use their discretion to determine the level of danger for themselves
- It could be an imposing application of VR to provide visual cues to pedestrians

This work was supported by a Korea University Grant.